Mutants of GABA Transaminase (POP2) Suppress the Severe Phenotype of succinic semialdehyde dehydrogenase (ssadh) Mutants in Arabidopsis

نویسندگان

  • Frank Ludewig
  • Anke Hüser
  • Hillel Fromm
  • Linda Beauclair
  • Nicolas Bouché
چکیده

BACKGROUND The gamma-aminubutyrate (GABA) shunt bypasses two steps of the tricarboxylic acid cycle, and is present in both prokaryotes and eukaryotes. In plants, the pathway is composed of the calcium/calmodulin-regulated cytosolic enzyme glutamate decarboxylase (GAD), the mitochondrial enzymes GABA transaminase (GABA-T; POP2) and succinic semialdehyde dehydrogenase (SSADH). We have previously shown that compromising the function of the GABA-shunt, by disrupting the SSADH gene of Arabidopsis, causes enhanced accumulation of reactive oxygen intermediates (ROIs) and cell death in response to light and heat stress. However, to date, genetic investigations of the relationships between enzymes of the GABA shunt have not been reported. PRINCIPAL FINDINGS To elucidate the role of succinic semialdehyde (SSA), gamma-hydroxybutyrate (GHB) and GABA in the accumulation of ROIs, we combined two genetic approaches to suppress the severe phenotype of ssadh mutants. Analysis of double pop2 ssadh mutants revealed that pop2 is epistatic to ssadh. Moreover, we isolated EMS-generated mutants suppressing the phenotype of ssadh revealing two new pop2 alleles. By measuring thermoluminescence at high temperature, the peroxide contents of ssadh and pop2 mutants were evaluated, showing that only ssadh plants accumulate peroxides. In addition, pop2 ssadh seedlings are more sensitive to exogenous SSA or GHB relative to wild type, because GHB and/or SSA accumulate in these plants. SIGNIFICANCE We conclude that the lack of supply of succinate and NADH to the TCA cycle is not responsible for the oxidative stress and growth retardations of ssadh mutants. Rather, we suggest that the accumulation of SSA, GHB, or both, produced downstream of the GABA-T transamination step, is toxic to the plants, resulting in high ROI levels and impaired development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial succinic-semialdehyde dehydrogenase of the gamma-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants.

The gamma-aminobutyrate (GABA) shunt is a metabolic pathway that bypasses two steps of the tricarboxylic acid cycle, and it is present in both prokaryotes and eukaryotes. In plants the pathway is composed of the calcium/calmodulin-regulated cytosolic enzyme glutamate decarboxylase and the mitochondrial enzymes GABA transaminase and succinic-semialdehyde dehydrogenase (SSADH). The activity of th...

متن کامل

SIGNIFICANT CHANGES IN THE ACTIVITY OF GABATRANSAMINASE AND SUCCINATE SEMIALDEHYDE DEHYDROGENASE OF MOUSE HYPOTHALAMUS FOLLOWING PERIPHERAL INJECTION OF CHOLECYSTOKININ-8 AND/OR CAERULEIN

The activities of 4-aminobutyric-2-oxoglutaric acid transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH) were determined in mouse hypothalamus after peripheral injections of cholecystokinin-8 (CCK-X)and/or caerulein (CLN). GABA transaminase activity was measured utilizing endogenous succinate semialdellyde dehydrogenase to convert the product of GAB A-T, succinate semiald...

متن کامل

Disorders of GABA metabolism: SSADH and GABA-transaminase deficiencies.

Clinical disorders known to affect inherited gamma-amino butyric acid (GABA) metabolism are autosomal recessively inherited succinic semialdehyde dehydrogenase and GABA-transaminase deficiency. The clinical presentation of succinic semialdehyde dehydrogenase deficiency includes intellectual disability, ataxia, obsessive-compulsive disorder and epilepsy with a nonprogressive course in typical ca...

متن کامل

A novel gamma-hydroxybutyrate dehydrogenase: identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency.

In plants, gamma-aminobutyrate (GABA), a non-protein amino acid, accumulates rapidly in response to a variety of abiotic stresses such as oxygen deficiency. Under normoxia, GABA is catabolized to succinic semialdehyde and then to succinate with the latter reaction being catalyzed by succinic semialdehyde dehydrogenase (SSADH). Complementation of an SSADH-deficient yeast mutant with an Arabidops...

متن کامل

Inherited disorders of gamma-aminobutyric acid metabolism and advances in ALDH5A1 mutation identification.

Inherited disorders of gamma-aminobutyric acid (GABA) metabolism include succinic semialdehyde dehydrogenase (SSADH) and gamma-aminobutyric acid transaminase (GABA-T) deficiencies. The clinical features, pathophysiology, diagnosis, and management of both, and an updated list of mutations in the ALDH5A1 gene, which cause SSADH deficiency, are discussed. A database of 112 individuals (71 children...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008